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We consider a single-product revenue management problem where, given an initial inventory, the objective is to dynamically
adjust prices over a finite sales horizon to maximize expected revenues. Realized demand is observed over time, but the
underlying functional relationship between price and mean demand rate that governs these observations (otherwise known
as the demand function or demand curve) is not known. We consider two instances of this problem: (i) a setting where
the demand function is assumed to belong to a known parametric family with unknown parameter values; and (ii) a
setting where the demand function is assumed to belong to a broad class of functions that need not admit any parametric
representation. In each case we develop policies that learn the demand function “on the fly,” and optimize prices based
on that. The performance of these algorithms is measured in terms of the regret: the revenue loss relative to the maximal
revenues that can be extracted when the demand function is known prior to the start of the selling season. We derive lower
bounds on the regret that hold for any admissible pricing policy, and then show that our proposed algorithms achieve a
regret that is “close” to this lower bound. The magnitude of the regret can be interpreted as the economic value of prior
knowledge on the demand function, manifested as the revenue loss due to model uncertainty.
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1. Introduction
Since the deregulation of the airline industry in the 1970s,
revenue management practices that deal with complex
pricing and demand management decisions have become
increasingly prevalent in a variety of industries; see Bitran
and Caldentey (2003), Elmaghraby and Keskinocak (2003),
and Talluri and van Ryzin (2005) for a broad overview of
the field and recent developments. (The literature review
in §2 provides a detailed survey of work directly related
to the current paper.) A critical assumption made in most
academic studies of revenue management problems is that
the functional relationship between the mean demand rate
and price, often referred to as the demand function or
demand curve, is known to the decision maker. This makes
the underlying problems more tractable and allows one to
extract structural insights. At the same time, this assump-
tion of “full information” endows the decision maker with
knowledge that s/he does not typically possess in practice.
Lack of information concerning the demand model

raises several fundamental questions. First and foremost,
is it possible to quantify the “value” of full information

(for example, by measuring the revenue loss due to imper-
fect information)? Second, is it possible to achieve anything
close to the maximal revenues in the full-information set-
ting by judiciously combining real-time demand learning
and pricing strategies? Finally, how would such strategies
exploit prior information, if any, on the structure of the
demand function?
The main objective of this paper is to shed some light on

the aforementioned questions. Our departure point will be
a prototypical single-product revenue management problem
first introduced and formalized by Gallego and van Ryzin
(1994). This formulation models realized demand as a
Poisson process whose intensity at each point in time is
determined by a price set by the decision maker. Given
an initial inventory, the objective is to dynamically price
the product so as to maximize expected revenues over a
finite selling horizon. In the dynamic optimization problem
considered in Gallego and van Ryzin (1994), the decision
maker knows the demand function prior to the start of the
selling season and designs optimal policies based on this
information. In the setting we pursue in this paper it is
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only possible to observe realized demand over time, and the
demand function itself is not known. To that end, we con-
sider two levels of uncertainty with regard to the demand
model: (i) a nonparametric setting where the demand func-
tion is only assumed to belong to a broad functional class
satisfying mild regularity conditions; and (ii) a parametric
setting in which the demand function admits a given para-
metric structure but the parameter values are not known.
The absence of perfect prior information concerning the

demand model introduces an important new component
into the above dynamic optimization problem, namely, ten-
sion between exploration (demand learning) and exploita-
tion (pricing). The longer one spends learning the demand
characteristics, the less time remains to exploit that knowl-
edge and optimize profits. On the other hand, less time
spent on demand learning leaves more residual uncertainty
that could hamper any pricing strategy in the exploitation
phase. One of the main contributions of this paper is to
formulate this dynamic pricing problem under incomplete
information, to pursue an analysis that highlights the key
trade-offs discussed above, and to articulate them in a pre-
cise mathematical manner.
To address uncertainty with regard to the demand model,

we introduce a family of pricing policies that learn the
demand function “on the fly.” Their performance will be
measured in terms of the revenue loss relative to a full-
information benchmark that assumes knowledge of the
demand function. We refer to this loss as the regret asso-
ciated with not knowing the demand function a priori;
the magnitude of the regret quantifies the economic value
of prior model information. The policies we consider are
designed with the objective of achieving a “small” regret
uniformly over the relevant class of demand functions
(either parametric or nonparametric). This adversarial set-
ting, where nature is allowed to counter a chosen policy
with the “worst” demand function, ensures that policies
exhibit “good” performance irrespective of the true demand
model.
The complexity of the problem described above makes

it difficult to evaluate the performance of any reasonable
policy, except via numerical experiments. To address this
issue, we consider an asymptotic regime that is character-
ized by a high volume of sales. More specifically, the initial
level of inventory and the magnitude of demand (“market
size”) grow large in proportion to each other; see Gallego
and van Ryzin (1994) and Talluri and van Ryzin (2005) for
further examples in the revenue management literature that
adopt this framework. This regime allows us to bound the
magnitude of the regret and to establish a rather surpris-
ing result with regard to our proposed policies: as the sales
volume grows large, the regret eventually shrinks to zero.
That is, these policies achieve (asymptotically) the maxi-
mal full-information revenues despite the absence of prior
information regarding the demand function; in that sense,
they are asymptotically optimal.
In more detail, the main contributions of this paper are

summarized as follows.

(i) We introduce a nonparametric pricing policy (see
Algorithm 1) that requires almost no prior information on
the demand function. In settings where the structure of
the demand function is known up to the values of certain
parameters, we develop a parametric pricing policy based
on maximum-likelihood estimation (see Algorithm 2 and
Algorithm 3).
(ii) We establish lower bounds on the regret that hold

for any admissible learning and pricing policy (see Propo-
sitions 2 and 4).
(iii) We derive upper bounds on the performance of our

nonparametric and parametric pricing policies (see Propo-
sitions 1 and 3). In all cases, the proposed policies achieve
a regret that is “not far” from the lower bound described
above. In the parametric setting when only one parameter
is unknown, we prove that essentially no admissible pric-
ing policy can achieve a smaller regret than our proposed
method (see Proposition 5).
(iv) Building on ideas from stochastic approximations,

we indicate how one can develop more refined sequential
policies, and illustrate this in the nonparametric setting (see
Algorithm 4 in Online Appendix A).
Returning to the questions raised earlier in this sec-

tion, our results shed light on the following issues. First,
despite having only limited (or almost no) prior informa-
tion, it is possible to construct joint learning and pricing
policies that generate revenues that are “close” to the best
achievable performance with full information. Our results
highlight an interesting observation. In the full-information
setting, Gallego and van Ryzin (1994) prove that fixed-price
heuristics lead to near-optimal revenues; hence, the value of
dynamic price changes is (at least asymptotically) limited.
In a setting with incomplete information, price changes
play a much more pivotal role because they are relied upon
to resolve uncertainty with regard to the demand function.
The regret bounds described above rigorously quantify

the economic value of a priori information on the demand
model. Alternatively, the lost revenues can be viewed as
quantifying the “price” paid due to model uncertainty.
Finally, our work highlights an important issue related to
model misspecification risk. In particular, if an algorithm
is designed under parametric assumptions, it is prone to
such risk because the true demand function may not (and
in many cases will not) belong to the assumed parametric
family. Our regret bounds provide a means for quantifying
the “price” that one pays for eliminating this risk via non-
parametric approaches; see also the numerical illustration
in §6.

The Remainder of This Paper. The next section
reviews related literature. Section 3 introduces the model
and formulates the problem. Section 4 studies the nonpara-
metric setting, and §5 focuses on cases where the demand
function possesses a parametric structure. Section 6 presents
numerical results and discusses some qualitative insights.
Section 7 provides proofs of Propositions 1–3. This paper
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has an online supplement with three parts, which can be
found at http://or.pubs.informs.org/. Appendix A formulates
adaptive versions of the nonparametric algorithm and illus-
trates their performance. Appendix B contains the proof of
Proposition 5 and Appendix C contains auxiliary lemmas
and their proofs.

2. Related Literature

Parametric Approaches. The majority of revenue
management studies that address demand function uncer-
tainty do so by assuming that one or more parameters char-
acterizing this function are unknown. The typical approach
here follows a dynamic programming formulation with
Bayesian updating, where a prior on the distribution of the
unknown parameters is initially postulated. Recent exam-
ples include Aviv and Pazgal (2005), Araman and Caldentey
(2005), and Farias and Van Roy (2006), all of which assume
that a single parameter is unknown. (See also Lobo and
Boyd 2003 and Carvalho and Puterman 2005.) Scarf (1959)
was one of the first papers to use this Bayesian formulation,
although in the context of inventory management.
Although the Bayesian approach provides for an attrac-

tive stylized analysis of the joint learning and pricing prob-
lem, it suffers from significant shortcomings. Most notably,
the objective of the dynamic optimization problem involves
an expectation that is taken relative to a prior distribu-
tion over the unknown parameters. Hence, any notion of
optimality associated with a Bayesian-based policy is with
respect to that prior. Moreover, the specification of this
prior distribution is typically constrained to so-called conju-
gate families and is not driven by “real” prior information;
the hindering element here is the computation of the poste-
rior via Bayes rule. The above factors introduce significant
restrictions on the models that are amenable to analysis
via Bayesian dynamic programming. Bertsimas and Perakis
(2006) have considered an alternative to this formulation
using a least squares approach in the context of a linear
demand model. Our work in the parametric setting is based
on a frequentist approach and hence is applicable to a wide
class of parametric models; as such, it offers an alterna-
tive to Bayesian approaches that circumvents some of their
deficiencies.

Nonparametric Approaches. The main difficulty fac-
ing nonparametric approaches is loss of tractability. Most
work here has been pursued in relatively simple static set-
tings that do not allow for learning of the demand func-
tion; see, e.g., Ball and Queyranne (2009) and Eren and
Maglaras (2007) for a competitive ratio formulation, and
Perakis and Roels (2009) for a minimax regret formu-
lation. These studies focus almost exclusively on struc-
tural insights. The recent paper by Rusmevichientong et al.
(2006) develops a nonparametric approach to a multiprod-
uct static pricing problem, based on historical data. The
formulation does not incorporate inventory constraints or

finite sales horizon considerations. In the context of opti-
mizing seat allocation policies for a single-flight multiclass
problem, van Ryzin and McGill (2000) show that one can
use stochastic approximation methods to reach near-optimal
capacity protection levels in the long run. The absence of
parametric assumptions in this case is with respect to the
distributions of customers’ requests for each class. (See also
Huh and Rusmevichientong 2008 for a related study.)
Perhaps the paper most closely related to our current

work is that of Lim and Shanthikumar (2007), who formu-
late a robust counterpart to the single-product revenue man-
agement problem of Gallego and van Ryzin (1994). In that
paper the uncertainty arises at the level of the point process
distribution characterizing realized demand, and the authors
use a max-min formulation where nature is adversarial at
every point in time. This type of conservative setting effec-
tively precludes any real-time learning and, moreover, does
not lend itself to prescriptive solutions.

Related Work in Other Disciplines. The general
problem of dynamic optimization with limited or no
information about a response function has also attracted
attention in other fields. In economics, a line of work that
traces back to Hannan (1957) studies settings where the
decision maker faces an oblivious opponent. The objective
is to minimize the difference between the rewards accu-
mulated by a given policy, and the rewards accumulated
by the best-possible single action had the decision maker
known in advance the actions of the adversary; see Foster
and Vohra (1999) for a review of this line of work and its
relation to developments in other fields.
A classical formulation of sequential optimization under

uncertainty that captures the essence of the exploration-
exploitation trade-off is the multiarmed bandit paradigm
that dates back to the work of Robbins (1952). This was
originally introduced as a model of clinical trials in the
statistics literature, but has since been used in many other
settings; see, e.g., Lai and Robbins (1985) and references
therein. Related studies in the computer science literature
include Auer et al. (2002), who study an adversarial ver-
sion of a multiarmed bandit problem, and Kleinberg and
Leighton (2003), who provide an analysis of an online
posted-price auction using these tools. (See Cesa-Bianchi
and Lugosi 2006 for a recent and comprehensive survey.)
Our work shares an important common theme with the
streams of literature surveyed above, insofar as it, too,
highlights exploration-exploitation trade-offs. On the other
hand, our work differs significantly from antecedent lit-
erature along three dimensions that are characteristic of
our dynamic pricing problem: we deal with a constrained
dynamic optimization problem (the constraint arising from
the initial inventory level); the action space of the decision
maker, namely, the feasible price set, is uncountable; and
the action space of the adversary (nature), namely, the class
of admissible demand functions, is also uncountable.
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3. Problem Formulation

Model Primitives and Basic Assumptions. We con-
sider a revenue management problem in which a monop-
olist sells a single product. The selling horizon is denoted
by T > 0, and after this time sales are discontinued and
there is no salvage value for the remaining unsold prod-
ucts. Demand for the product at any time t ∈ �0� T � is
given by a Poisson process with intensity �t that measures
the instantaneous demand rate (in units such as number
of products requested per hour, say): letting �� �+ → �+
denote the demand function, then if the price at time t
is p
t�, the instantaneous demand rate at time t is given by
�t = �
p
t��, and realized demand is a controlled Poisson
process with this intensity.
We assume that the set of feasible prices is � p� �p�∪p�,

where 0 < p < �p < � and p� > 0 is a price that “turns
off” demand (and revenue rate), i.e., �
p��= 0. (The
case p� = � can be treated by assuming r
�
p��� �=
limp→p� r
�
p�� = 0, which yields limp→p� �
p� = 0.)
With regard to the demand function, we assume that �
·�
is nonincreasing in the price p, has an inverse denoted
by �
·�, and the revenue rate r
�� �= ��
�� is concave.
These assumptions are quite standard in the revenue man-
agement literature, resulting in the term regular affixed
to demand functions satisfying these conditions; see, e.g.,
Talluri and van Ryzin (2005, §7).
Let (p
t�� 0 � t � T ) denote the price process, which

is assumed to have sample paths that are right con-
tinuous, with left limits taking values in � p� �p� ∪ p�.
Let N
·� be a unit-rate Poisson process. The cumulative
demand for the product up until time t is then given by
D
t� �=N


∫ t

0 �
p
s��ds�. We say that (p
t�� 0� t � T ) is
nonanticipating if the value of p
t� at each time t ∈ �0� T �
is only allowed to depend on past prices �p
s�� s ∈ �0� t��
and demand values �
D
s��� s ∈ �0� t��. (More formally, the
price process is adapted to the filtration generated by the
past values of the demand and price processes.)

Information Structure and the Economic Optimiza-
tion Problem. We assume that the decision maker does
not know the true demand function �, but is able to contin-
uously observe realized demand at all time instants, starting
at time 0 and up until the end of the selling horizon T . The
only information available regarding � is that it belongs to
a class of admissible demand functions, �; in §4, � will be
taken to be a nonparametric class of functions, and in §5 it
will be restricted to a parametric class. Thus, the makeup
of the class � summarizes prior information on the demand
model.
We shall use � to denote a pricing policy, which, roughly

speaking, maps the above information structure to a nonan-
ticipating price process (p
t�� 0� t � T ). With some abuse
of terminology, we will use the term “policy” to refer to
the price process itself and the algorithm that generates it,
interchangeably. Put

N�
t� �=N
(∫ t

0
�
p
s��ds

)
for 0� t � T � (1)

where N�
t� denotes the cumulative demand up to time t
under the policy �.
Let x > 0 denote the inventory level (number of prod-

ucts) at the start of the selling season. A pricing policy � is
said to be admissible if the induced price process satisfies

∫ T

0
dN�
s�� x a.s.� (2)

p
s� ∈ � p� �p�∪p�� 0� s � T � (3)

It is important to note that although the decision maker does
not know the demand function, knowledge that �
p��= 0
guarantees that the constraint (2) can be met. Let � denote
the set of admissible pricing policies.
The dynamic optimization problem faced by the decision

maker under the information structure described above is:
choose � ∈� to maximize the total expected revenues

J �
x� T ��� �= Ɛ
[∫ T

0
p
s�dN�
s�

]
� (4)

The dependence on � in the left-hand side is indicative of
the fact that the expectation on the right-hand side is taken
with respect to the true demand distribution. Because the
decision maker cannot compute the expectation in (4) with-
out knowing the underlying demand function, the above
optimization problem does not seem to be well posed. In
a sense, one can view the solution of (4) as being made
possible only with the aid of an “oracle” that can compute
the quantity J �
x� T ��� for any given policy. We will now
redefine the decision maker’s objective in a more suitable
manner, using the notion of a full-information benchmark.

A Full-Information Benchmark. Let us first explain
how the analysis of the dynamic optimization problem
described in (4) proceeds when one removes two signifi-
cant obstacles: lack of knowledge of the demand function
� prior to the start of the selling season, and stochastic
variability in realized demand. In particular, consider the
following full-information deterministic optimization prob-
lem, in which the function � is assumed to be known at
time t = 0:

sup
∫ T

0
r
�
p
s���ds�

s.t.
∫ T

0
�
p
s��ds � x�

p
s� ∈ � p� �p�∪p� for all s ∈ �0� T ��

(5)

This problem is obtained from (4), and the admissibility
conditions (2) and (3), by replacing the random process
characterizing customer purchase requests by its mean rate.
For example, if one focuses on the objective (4), then the
deterministic objective in (5) is obtained by substituting
�
p
s��ds for dN�
s� because r
�
p
s���= p
s��
p
s��.
The same parallel can be drawn between the first constraint
of the deterministic problem and (2). Consequently, it is
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reasonable to refer to (5) as a full-information deterministic
relaxation of the original dynamic pricing problem (4).
Let us denote the value of (5) as J D
x�T � ��, where

D is mnemonic for deterministic, and the choice of nota-
tion with respect to � reflects the fact that the optimization
problem is solved conditioned on knowing the true under-
lying demand function. The value of the full-information
deterministic relaxation provides, as one would anticipate,
an upper bound on expected revenues generated by any
pricing policy � ∈ �, that is, J �
x� T ��� � J D
x�T � ��
for all � ∈ �. This rather intuitive observation is formal-
ized in Lemma 1 in Online Appendix C, which essentially
generalizes Gallego and van Ryzin (1994, Proposition 2).

The Minimax Regret Objective. As indicated above,
for any demand function � ∈�, we have that J �
x� T ����
J D
x�T � �� for all admissible policies � ∈ �. With this
in mind, we define the regret ��
x� T ��� for any given
function � ∈� and policy � ∈� to be

��
x� T ���= 1− J �
x� T ���

J D
x�T � �� � (6)

The regret measures the percentage loss in performance of
any policy � in relation to the benchmark J D
x�T � ��. By
definition, the value of the regret always lies in the inter-
val �0�1�, and the smaller the regret, the better the per-
formance of a policy �; in the extreme case when the
regret is zero, then the policy � is guaranteed to extract the
maximum full-information revenues. Because the decision
maker does not know which demand function s/he will face
in the class �, it is attractive to design pricing policies that
perform well irrespective of the actual underlying demand
function. In particular, if the decision maker uses a policy
� ∈�, and nature then “picks” the worst possible demand
function for that policy, then the resulting regret would be

sup
�∈�

��
x� T ���� (7)

In this game-theoretic setting it is now possible to restate
the decision maker’s objective, initially given in (4), as
follows: pick � ∈ � to minimize (7). The advantage of
this formulation is that the decision maker’s problem is
now well posed: for any � ∈ � and fixed � ∈ �, it is
possible, at least in theory, to compute the numerator on
the right-hand side in (6), and hence (7). Roughly speak-
ing, one can attach a worst case � ∈ � to each policy
� ∈ �, and subsequently one can try to optimize this by
searching for the policy with the best worst-case perfor-
mance. In other words, we are interested in characterizing
the minimax regret

inf
�∈�

sup
�∈�

��
x� T ���� (8)

This quantity has an obvious physical interpretation: it mea-
sures the monetary value (in normalized currency units) of
knowing the demand function a priori. The issue, of course,

is that, barring exceedingly simple cases, it is not possible
to compute the minimax regret. Our objective in what
follows will be to characterize this quantity by deriving
suitable bounds on (8) in cases where the class � is
nonparametric or is restricted to a suitable parametric class
of demand functions.

4. Main Results: The Nonparametric
Case

4.1. A Nonparametric Pricing Algorithm

We introduce below a learning and pricing policy defined
through two tuning parameters 
�� ��: � is a positive integer
and � ∈ 
0� T �. The general structure, which is summarized
for convenience in algorithmic form, is divided into two
main stages. A “learning” phase (exploration) of length �
is used first, in which � prices are tested. Then, a “pricing”
phase (exploitation) fixes a “good” price based on demand
observations in the first phase. The intuition underlying the
method is discussed immediately following the description
of the method.

Algorithm 1. �
����
Step 1. Initialization:
(a) Set the learning interval to be �0� ��, and the num-

ber of prices to experiment with to be �. Put �= �/�.
(b) Divide � p� �p� into � equally spaced intervals and

let �pi� i= 1� � � � � �� be the left endpoints of these intervals.
Step 2. Learning/experimentation:
(a) On the interval �0� �� apply pi from ti−1 = 
i−1��

to ti = i�, i= 1�2� � � � � �, as long as inventory is positive.
If no more units are in stock, apply p� up until time T and
STOP.

(b) Compute

d̂
pi�=
total demand over �ti−1� ti�

�
� i= 1� � � � � ��

Step 3. Optimization:

Compute �pu = argmax
1�i��

�pid̂
pi���

�pc = argmin
1�i��

�d̂
pi�− x/T �� (9)

and set �p=max� �pc� �pu�� (10)

Step 4. Pricing:
On the interval 
�� T � apply �p as long as inventory is

positive, then apply p� for the remaining time.

Intuition and Key Underlying Ideas. At first, a non-
parametric empirical estimate of the demand function is
obtained based on a learning phase of length � described
in Steps 1 and 2. The intuition underlying Steps 3 and
4 is based on the analysis of the deterministic relaxation
(5) whose solution (see Lemma 1 in Online Appendix C)
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is given by p
s� = pD �= max�pu�pc� for s ∈ �0� T ′� and
p
s�= p� for s > T ′, where

pu = argmax
p∈� p� �p�

�r
�
p���� pc = argmin
p∈� p� �p�

��
p�− x/T ��

and T ′ =min�T � x/�
pD��. Here, the superscripts u and c
stand for unconstrained and constrained, respectively, in
reference to whether or not the inventory constraint in (5)
is binding. In particular, the deterministic problem (5) can
be solved by restricting attention to the two prices pu and
pc. Algorithm 1 hinges on this observation.
In Step 3, the objective is to obtain an accurate estimate

of pD based on the observations during the exploration
phase, while at the same time keeping � small to limit the
revenue loss over this learning phase. The algorithm then
applies this price on 
�� T �. With the exception of the short
initial phase �0� ��, the expected revenues (in the real sys-
tem) will be close to those achieved by pD over �0� T �. The
analysis in Gallego and van Ryzin (1994) establishes that
those revenues would be close to J D
x�T � ��, and as a
result, the regret ��
x� T ��� should be small.
To estimate pD, the algorithm dedicates an initial portion

�0� �� of the total selling interval �0� T � to an exploration
of the price domain. On this initial interval, the algorithm
experiments with � prices where each is kept fixed for
�/� units of time. This structure leads to three main sources
of error in the search for pD. First, during the learning
phase one incurs an exploration bias because the prices
being tested there are not close to pD (or close to the
optimal fixed price for that matter). This incurs losses of
order � . Second, experimenting with only a finite number
of prices � in the search for pD results in a deterministic
error of order 1/� in Step 3. Finally, only “noisy” demand
observations are available at each of the � price points, and
the longer a price is held fixed, the more accurate the esti-
mate of the mean demand rate at that price. This introduces
a stochastic error of order 
�/��−1/2 stemming from the
nature of the Poisson process. The crux of the matter is to
balance these three error sources by a suitable choice of
the tuning parameters � and �.

4.2. Model Uncertainty: The Class of
Demand Functions

The nonparametric class of functions that we consider con-
sists of regular demand functions (satisfying the standard
conditions laid out in §3), which, in addition, satisfy the
following:

Assumption 1. For some finite positive constants M , K,
�K, m, with K � �K:
(i) Boundedness: ��
p���M for all p ∈ � p� �p�.
(ii) Lipschitz continuity: ��
p� − �
p′�� � �K�p − p′�

for all p�p′ ∈ � p� �p� and ��
l�−�
l′��� K−1�l− l′� for all
l� l′ ∈ ��
�p���
 p��.
(iii) Minimum revenue rate: max�p�
p��p ∈ � p� �p���m.

Let � �= �
M� K� �K�m� denote this class of demand
functions. Assumptions 1(i) and 1(ii) are quite benign,
only requiring minimal smoothness of the demand func-
tion; (ii) also ensures that when �
·� is positive, it does not
have “flat regions.” Assumption 1(iii) states that a minimal
revenue rate exists, hence avoiding trivialities.
Note that Assumptions (i)–(iii) above hold for many mod-

els of the demand function used in the revenue manage-
ment and economics literature (e.g., linear, exponential, and
isoelastic/Pareto with parameters lying in a compact set;
cf. Talluri and van Ryzin 2005, §7 for further examples).

4.3. Performance Analysis

Because minimax regret is hardly a tractable quantity, we
introduce in this section an asymptotic regime characterized
by a high volume of sales, which will be used to analyze
the performance of Algorithm 1. We consider a regime in
which both the size of the initial inventory as well as poten-
tial demand grow proportionally large. In particular, for a
market of size n, where n is a positive integer, the initial
inventory and the demand function are now assumed to be
given by

xn = nx and �n
·�= n�
·�� (11)

Thus, the index n determines the order of magnitude of
both inventory and rate of demand. We will denote by �n

the set of admissible policies for a market of scale n,
and the expected revenues under a policy �n ∈ �n will
be denoted J �

n 
x� T ���. With some abuse of notation, we
will occasionally use � to denote a sequence of policies
��n�n= 1�2� � � �� as well as any element of that sequence,
omitting the subscript n to avoid cluttering the notation.
For each n = 1�2� � � � � we denote by J D

n 
x� T � �� the
value of the deterministic relaxation given in (5) with
the scaling given in (11); it is straightforward to verify
that J D

n 
x� T � ��= nJD
x�T � ��. Finally, let the regret be
denoted as ��

n 
x� T ��� �= 1 − J �
n 
x� T ���/JD

n 
x� T � ��.
The following definition characterizes admissible policies
that have “good” asymptotic properties.

Definition 1 (Asymptotic Optimality). A sequence of
admissible policies �n ∈ �n is said to be asymptotically
optimal if

sup
�∈�

��
n 
x� T ���→ 0 as n→�� (12)

In other words, asymptotically optimal policies achieve the
full-information upper bound on revenues as n→�, uni-
formly over the class of admissible demand functions.
For the purpose of asymptotic analysis, we use the fol-

lowing notation: for real-valued positive sequences �an�
and �bn�, we write an = O
bn� if an/bn is bounded from
above by a constant, and if an/bn is also bounded from
below, then we write an � bn. We now analyze the per-
formance of policies associated with Algorithm 1 in the
asymptotic regime described above.
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Proposition 1. Let Assumption 1 hold. Set �n � n−1/4,
�n � n1/4 and let �n �=�
�n��n� be given by Algorithm 1.
Then, the sequence ��n� is asymptotically optimal, and for
all n� 1,

sup
�∈�

��
n 
x� T ����

C
logn�1/2

n1/4
(13)

for some finite positive constant C.

The constant C above depends only on the parameters
characterizing the class �, the initial inventory x, and the
time horizon T . The exact dependence is somewhat com-
plex and is omitted; however, we note that it is fully con-
sistent with basic intuition: as one expands the class � by
suitably increasing or decreasing the value of the parame-
ters in Assumption 1, the magnitude of C grows, and vice
versa. (This can also be inferred by carefully inspecting the
proof of the proposition.)
We next present a lower bound on the minimax regret

which establishes a fundamental limit on the performance
of any admissible pricing policy. Roughly speaking, the
main idea behind this result is to construct a worst-case
demand function such that the regret is large for any policy.

Proposition 2. Let Assumption 1 hold with M , �K satisfy-
ing M �max�2�K �p� �K �p+ x/T �. Then, there exists a finite
positive constant C ′ such that for any sequence of admis-
sible policies ��n� and for all n� 1,

sup
�∈�

��
n 
x� T ����

C ′

n1/2
� (14)

Combining Propositions 1 and 2, one can characterize the
magnitude of the minimax regret as follows:

C ′

n1/2
� inf

�∈�n

sup
�∈�

��
n 
x� T ����

C
logn�1/2

n1/4
� (15)

and hence the performance of Algorithm 1 is “not far” from
being minimax optimal (i.e., achieving the lower bound).
A question that remains open is whether one can close this
gap by further refining the algorithm. We revisit this point
in §5 and Online Appendix A.

5. Main Results: The Parametric Case
In this section, we assume that the demand function is
known to have a parametric form. Our goal is to develop
pricing policies that exploit this information and that will
work well for a large class of admissible parametric
demand functions. One of the main questions of interest
here is whether these policies achieve a smaller regret rel-
ative to the nonparametric case, and if there exist policies
whose performance cannot be improved upon.

Preliminaries. Let k denote a positive integer and
�
+�= ��
·� ,�� , ∈+� be a parametric family of demand

functions, where + ⊆ �k is assumed to be a convex com-
pact set, , ∈+ is a parameter vector, and �� �+ ×+→�+.
We consider all parametric families that are subsets of the
class of admissible regular demand functions defined in §4,
i.e., �
+�⊂� �=�
M� K� �K�m�.
In the current setting, we will assume that the decision

maker knows that � ∈�
+�, i.e., s/he knows the paramet-
ric structure of the demand function, but does not know
the value of the parameter vector ,. We continue to denote
by � the set of admissible pricing policies, i.e., policies that
satisfy (2) and (3). For any policy � ∈ �, let J �
x� T � ,�
denote the expected revenues under �, and let J D
x�T � ,�
denote the value of the deterministic relaxation (5) when
the value of the unknown parameter vector is revealed to
the decision maker prior to the start of the selling sea-
son. Let ��
x� T � ,� denote the regret under a policy �,
namely,

��
x� T � ,�= 1− J �
x� T � ,�

J D
x�T � ,� � (16)

5.1. The Proposed Method

We consider a simple modification of the approach taken
in Algorithm 1 that now exploits the assumed parametric
structure of the demand function.

Algorithm 2. �
��
Step 1. Initialization:
(a) Set the learning interval to be �0� ��. Put �= �/k,

where k is the dimension of the parameter space +.
(b) Choose a set of k prices, �pi� i= 1� � � � � k�.

Step 2. Learning/experimentation:
(a) On the interval �0� �� apply pi from ti−1 = 
i−1��

to ti = i�, i= 1� � � � � k, as long as the inventory is positive.
If no more units are in stock, apply p� up until time T and
STOP.

(b) Compute

d̂i =
total demand over �ti−1� ti�

�
� i= 1� � � � � k�

(c) Let ,̂ be a solution of ��
pi� ,�= d̂i� i= 1� � � � � k�.
Step 3. Optimization:

pu
,̂�= argmax�p�
p� ,̂�� p ∈ � p� �p���
pc
,̂�= argmin���
p� ,̂�− x/T �� p ∈ � p� �p���
�p=max�pu
,̂�� pc
,̂���

Step 4. Pricing:
On the interval 
�� T � apply �p as long as inventory is

positive, then apply p� for the remaining time.

Note that Step 1(b) requires one to define the prices
�p1� � � � � pk� and Step 2(c) implicitly assumes that the sys-
tem of equations admits a solution. (We define the prices
and state this assumption more formally when analyzing



Besbes and Zeevi: Dynamic Pricing Without Knowing the Demand Function
1414 Operations Research 57(6), pp. 1407–1420, © 2009 INFORMS

the performance of Algorithm 2.) The intuition behind this
algorithm is similar to the one that underlies the construc-
tion of Algorithm 1, the only difference being that the para-
metric structure allows one to infer accurate information
about the demand function using only a small number of
test prices (k). In particular, recalling the discussion fol-
lowing Algorithm 1, a key difference is that the determin-
istic error source associated with price granularity does not
affect the performance of Algorithm 2.

5.2. The Parametric Class of Demand Functions

First, note that the inclusion �
+�⊂� implies that �
·� ,�
has an inverse for all , ∈ +; this inverse will be denoted
�
·� ,�. (Note also that conditions (i)–(iii) in Assumption 1
hold.) For any parameter vector , ∈+, we denote the rev-
enue function by r
l� ,� �= �
l� ,�l. Let �P,� , ∈+� be
the family of demand distributions corresponding to Pois-
son processes with controlled intensities �
·� ,�� , ∈ +.
We denote by f�
p�,�
·� the probability mass function of a
Poisson random variable with intensity �
p�,�.
The following technical conditions articulate standard

regularity assumptions in the context of maximum-likeli-
hood estimation (cf. Borovkov 1998) and are used to define
the admissible class of parametric demand functions.

Assumption 2. (i) There exists a vector of distinct prices
�p= 
p1� � � � � pk� ∈ � p� �p� such that:

(a) For some l0 > 0, min1�i�k inf,∈+ �
pi� ,� > l0.
(b) For any vector �d = 
d1� � � � � dk�, the system of

equations ��
pi� ,� = di� i = 1� � � � � k� has a unique
solution in ,. Let g
 �p� �d� denote this solution. We assume
in addition that g
 �p� ·� is Lipschitz continuous with con-
stant 0> 0.
(c) For i = 1� � � � � k,

√
�
pi� ,� is differentiable

on +.

(ii) For some �K2 > 0, ��
p�,�−�
p�,′��� �K2�,−,′��
for all p ∈ � p� �p� and ,, ,′ ∈+.

Condition (i) ensures that the parametric model is
identifiable based on a sufficient set of observations. Con-
dition (ii) is a mild regularity assumption on the paramet-
ric class, controlling for changes in the demand curve as
parameters vary. We provide below an example of a para-
metric class that satisfies Assumption 2.

Example 1 (Linear Demand Function). Let �
p�,� =
,1− ,2p, and set � p� �p�= �1�2�. Let �
+�= ��
·� ,�� , ∈
�10�20�× �1�4��. If one sets 
p1� p2�= 
1�2�, it is straight-
forward to verify conditions (i)(a), (i)(c), and that (ii) is
satisfied with �K2 = 1. It is also easy to see that the unique
solution associated with condition (i)(b) is given by

g
p1�p2�d1�d2�=
(
d1+

p1
p2−p1

�d1−d2��
1

p2−p1
�d1−d2�

)
�

and g
p1� p2�d1�d2� is clearly Lipschitz continuous with
respect to (d1�d2). �

5.3. Performance Analysis

Suppose that the initial inventory level and the demand
function are scaled according to (11), and denote the regret
by ��

n 
x� T � ,�= 1− J �
n 
x� T � ,�/J D

n 
x� T � ,�.
Proposition 3. Let Assumptions 1 and 2 hold and let
�p1� � � � � pk� be as in Assumption 2(i). Set �n � n−1/3 and let
�n �=�
�n� be defined by Algorithm 2. Then, the sequence
of policies ��n� is asymptotically optimal and satisfies

sup
,∈+

��
n 
x� T � ,��

C
logn�1/2

n1/3
(17)

for all n� 1 and some finite positive constant C.

Contrasting the above with Proposition 1, we observe
that the parametric structure of the demand function trans-
lates into improved performance bounds for the learning
and pricing algorithm that is designed with this knowledge
in mind. In particular, the regret is now of order �n =
O

logn�1/2n−1/3� as opposed to �n = O

logn�1/2n−1/4�
in the nonparametric case. In addition, note that the upper
bound above holds for all admissible parametric families.
The improvement in terms of generated revenues, as quan-
tified by the smaller magnitude of the regret, spells out the
advantages of using a parametric approach versus a non-
parametric one. The downside—namely, model misspeci-
fication and its consequences—is illustrated and discussed
in §6.
At an intuitive level, classical estimation theory tells us

that parameter uncertainty cannot be resolved faster than
rate n−1/2 with n observations. This suggests that for the
asymptotic regime we consider in this paper, no admissible
pricing policy would be able to achieve a convergence rate
faster than n−1/2. This intuition is made rigorous in the next
proposition.

Proposition 4. Let Assumption 1 hold with M� �K
satisfying M � max�2�K �p� �K �p + x/T �. Then, there exists
a parametric family �
+� ⊂ �
M� K� �K�m� satisfying
Assumption 2 such that for some positive constant C ′ and
for all admissible policies ��n�,

sup
,∈+

��
n 
x� T � ,��

C ′

n1/2
(18)

for all n� 1.

This result follows in a relatively straightforward manner
from Proposition 2.

5.4. An Optimal Algorithm When a Single
Parameter Is Unknown

Given the lower bound in (18), the natural question that
arises is whether it is possible to close the remaining gap
with respect to the upper bound in Proposition 3. We study
this question in the context of a single unknown parameter,
i.e., k= 1, and hence +⊆�. Consider the following 1-step
policy �
1��
1�� � � � ��
1��.
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Algorithm 3. �
1��
1�� � � � ��
1��
Step 1. Initialization:
(a) Set the number of steps to be 1 and define �
i�,

i= 1� � � � � 1 so that �
1� + · · ·+�
1� = T .
(b) Choose a price �p1 ∈ � p� �p� as in Assumption 2(i).

Step 2. Learning/Optimization/Pricing:
Set t1 = 0.
For i= 1� � � � � 1,
(a) Learning/Pricing:
(i) Apply �pi on the interval �ti� ti + �
i�� as long

as the inventory is positive. If no more units are in stock,
apply p� up until time T and STOP.

(ii) Compute

d̂i =
total demand over �ti� ti +�
i��

�
i�
�

(iii) Set ti+1 = ti +�
i�.
(iv) Let ,̂i be the unique solution of �
pi� ,�= d̂i.

(b) Optimization:

pu
,̂i�= argmax�p�
p� ,̂i�� p ∈ � p� �p���
pc
,̂i�= argmin���
p� ,̂i�− x/t�� p ∈ � p� �p���
�pi+1 =max�pu
,̂i�� pc
,̂i���

End For

The intuition underlying Algorithm 3 is as follows.
When a single parameter is unknown, one can infer infor-
mation about the parameter from observations of demand
at a single price. Given this, the idea of Algorithm 3 is
to price close to pD after the first stage, but to continue
learning. In particular, the estimate of pD is improved from
stage to stage using the demand observations from the pre-
vious stage. As a result, losses are mitigated by two effects:
(i) after stage 1, the price is always close to pD; and (ii) the
estimate of pD becomes more precise. For what follows,
we slightly strengthen Assumption 2(i).

Assumption 3. infp∈� p� �p� inf,∈+ �
p�,� > l0 and for any
price p ∈ � p� �p� and any d � 0, the equation �
p� ·� = d
has a unique solution. If g
p�d� denotes this solution, then
g
p� ·� is Lipschitz continuous with constant 0> 0.

We now analyze the performance of policies associated
with Algorithm 3. In particular, suppose that the initial
inventory level and the demand function are scaled accord-
ing to (11), and define the sequence of tuning parameters
�1n��


1�
n � � � � ��
1n�

n � as follows:

1n = 
log2�−1 log logn� (19)

�
m�
n = 2nn


a1n /am�−1� m= 1� � � � � 1n� (20)

where am = 2m−1/
2m − 1� for m � 1, and 2n > 0 is a
normalizing constant chosen so �
1�

n + · · · +�
1n�
n = T . We

then have the following result.

Proposition 5. Let Assumptions 1, 2, and 3 hold. Let
�1n��


1�
n � � � � ��
1n�

n � be defined as in (19) and (20) and put
�n �=�
1n��


1�
n � � � � ��
1n�

n �, defined by Algorithm 3. Then,
the sequence of policies ��n� is asymptotically optimal and
satisfies

sup
,∈+

��
n 
x� T � ,�=O

(

log logn�
logn�1/2

n1/2

)
� (21)

Note that the regret of the sequence for policies intro-
duced in Proposition 5 achieves the lower bound spelled
out in Proposition 4 (up to logarithmic terms). In that sense,
these policies cannot be improved upon. On the other hand,
Algorithm 3 is restricted to the case where only one param-
eter is unknown, and exploits the fact that in this setting
it is possible to learn the single unknown parameter by
conducting price experiments in the neighborhood of the
near-optimal price pD. Designing policies that achieve the
lower bound in Proposition 4 in the multiparameter case
remains an open question.

6. Numerical Results and
Qualitative Insights

6.1. Performance of the (Non)Parametric Policies
and the “Price” of Uncertainty

We examine the performance of three policies developed in
the previous sections: (i) the nonparametric policy defined
in Algorithm 1; (ii) the parametric policy defined by
means of Algorithm 2 and designed for a finite number of
unknown parameters; and (iii) the parametric policy defined
in Algorithm 3 designed for cases with a single unknown
parameter. (The tuning parameters are taken as in Proposi-
tions 1, 3, and 5, respectively.)
The performance of these policies are measured by the

magnitude of the regret. Note that ��
n 
x� T ��� ≈ C/n�

implies that log��
n 
x� T ��� should be approximately linear

in logn with slope −�. In Figure 1, we depict ��
n 
x� T ���

as a function of n in a log-log plot for large values of n, and
compute the best (least squares) linear fit for these values.
The results depicted are based on running 103 independent
simulation replications from which the performance indi-
cators were derived by averaging. The standard error for
��

n 
x� T ��� was below 0�05% in all cases.
Figure 1(a) summarizes results for an underlying expo-

nential demand model �
p� = , exp
−0�5p�, where
,= 10 exp
1�, and Figure 1(b) presents results for an under-
lying linear demand model �
p� = 30− ,p, where ,= 3.
The nonparametric algorithm does not make any assump-
tions with regard to the structure of the demand function
(beyond those spelled out in §4), whereas the parametric
algorithms are assumed to know the parametric structure,
but the true value of , is not revealed to them. In both
cases, the initial normalized inventory level was x= 20, the
selling horizon was T = 1, and the feasible price set was
� p� �p�= �0�1�10�.
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Figure 1. Performance of pricing policies as a function of the market size 
n�.
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Notes. Stars show the performance of the nonparametric policy defined in Algorithm 1; dots represent the performance of the parametric policy defined
in Algorithm 2; and squares depict the performance of the parametric policy defined in Algorithm 3. The dashed lines represent the best linear fit to each
set of points; in panel (a), the demand function is exponential and in panel (b) linear.

Discussion. The slopes of the best linear fit in Fig-
ures 1(a) and 1(b) are very close to � =−1/4, � =−1/3,
and � = −1/2, predicted by the upper bounds in (13),
(17), and (21), respectively. These results provide a “pic-
ture proof” of the Propositions 1, 3, and 5. As is evident,
the less structure is assumed a priori, the higher the profit
loss relative to the full-information benchmark: informally
speaking, this is the price paid due to increasing uncertainty
with regard to the demand model.
An additional fundamental difference between the vari-

ous policies concerns the degree to which the price domain
is explored. The nonparametric policy (Algorithm 1)
essentially needs to explore the entire price domain; the
general parametric policy (Algorithm 2) needs to test a
number of prices equal to the number of unknown param-
eters; and the parametric policy designed for the case of
a single unknown parameter (Algorithm 3) explores only
prices in the vicinity of the price pD. In other words, as
uncertainty decreases, the price exploration region shrinks
as well.

6.2. The “Price” of Hedging Misspecification Risk

We have seen in the previous section that more refined
information regarding the demand model yields higher rev-
enues. Thus, it becomes tempting to postulate parametric
structure, which in turn may be incorrect relative to the
true underlying demand model. This misspecification risk
can be eliminated via nonparametric pricing policies, but at

the price of settling for more modest performance revenue-
wise. We now provide an illustration of this trade-off.
We fix the time horizon to be T = 1 and the set of fea-

sible prices to be � p� �p� = �0�1�10�. Figure 2 depicts the
regret��

n 
x� T ��� for two underlying demand models, var-
ious values of n, and three policies. The first policy assumes
an exponential parametric structure for the demand func-
tion, �
p�,�= ,1 exp
−,2p� with ,= 
,1� ,2�, and applies
Algorithm 2 with �n = n−1/3. The second policy assumes
a linear parametric structure �
p�,� = 
,1 − ,2p�

+ and
applies Algorithm 2 with �n = n−1/3. Finally, the third pol-
icy is the one given by the nonparametric method described
in Algorithm 1 (with tuning parameters as in Proposition 1).
The point of this comparison is to illustrate that the para-
metric algorithm outperforms its nonparametric counterpart
when the assumed parametric model is consistent with the
true demand function; otherwise, the parametric algorithm
leads to a regret that does not converge to zero due to a
model misspecification error.
In Figures 2(a) and 2(b), the underlying demand model

is given by �
p� = a exp
−0p� with a = 10 exp
1� and
0= 1, and hence the policy that assumes the exponential
structure (squares) is well specified, whereas the policy that
assumes a linear demand function (crosses) suffers from
model misspecification.
In Figures 2(c) and 2(d), the underlying demand model

is given by �
p�= 
a−0p�+ with a= 30 and 0= 3. Now
the policy that assumes the exponential structure (squares)
corresponds to a misspecified case, whereas the policy that
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Figure 2. Performance of the parametric and nonparametric policies as a function of the market size 
n�.
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Notes. The underlying demand model is exponential in Figures (a) and (b) and linear in Figures (c) and (d). Arrows indicate if the approach used is
nonparametric [np] or parametric [p], and whether the model is well specified or misspecified in the case of the parametric algorithm. Crosses show the
performance of the parametric policy (Algorithm 2) when a linear model is assumed while squares depict its performance when an exponential model is
assumed; stars represent the performance of the nonparametric policy (Algorithm 1).

assumes a linear demand function (crosses) corresponds to
a well-specified case. In Figures 2(a) and 2(c), the normal-
ized inventory is x = 8, and in Figures 2(b) and 2(d), it
is taken to be x = 20. The results depicted in the figures
are based on running 103 independent simulation replica-
tions from which the performance indicators were derived
by averaging. The standard error was below 0�9% in all
cases.

Discussion. We focus on Figures 2(a) and 2(b) because
similar remarks apply to Figures 2(c) and 2(d). First, note
that the parametric algorithm is able to achieve close to
90% of the full-information revenues when the paramet-
ric model is well specified, when the market size is n =
100 or more. In addition, the convergence of the regret for
Algorithm 2 is faster for small n under the well-specified
parametric assumption (squares) in comparison to the non-
parametric algorithm (stars). (We note that the nonmono-
tonic performance of the nonparametric algorithm (stars)
stems from the fact that the price grid used by this algo-
rithm changes with n, and consequently the minimal dis-
tance of the sought fixed price to any price on the grid need
not be monotonic with respect to n.)
In contrast, if the model is misspecified, the regret

��
n 
x� T ��� converges to a strictly positive value (crosses),

as expected, and hence the performance of the parametric
algorithm fails to asymptotically achieve the full-informa-
tion revenues. The takeaway message here is that a non-
parametric approach eliminates the risk stemming from

model misspecification, but at a price of extracting lower
revenues than its parametric counterpart. The regret bounds
derived in earlier sections precisely spell out the magnitude
of this “price” of misspecification.

6.3. Numerical Analysis of the Bounds in
Propositions 1 and 3

The results of Propositions 1 and 3 derive upper bounds
on the regret that involve constants whose values have
not been specified. Ideally, one would like to character-
ize the smallest-possible constants for which the upper
bounds hold to determine the nonasymptotic behavior of
the policies. Whereas an exact analysis along these lines
is essentially intractable, it is possible to investigate this
point numerically and assess the typical magnitude of these
constants.
Fix T = 1 and � p� �p�= �5�10�, and consider two families

of demand functions: The first corresponds to an exponen-
tial class �1 = �a exp�−0p�� a ∈ �a� ā��0 ∈ �0� 0̄��, where
�a� ā� = �5�10� and �0� 0̄� = �0�1�0�2�; the second corre-
sponds to a linear class �2 = �
b − 2p�+� b ∈ � b� b̄��2 ∈
�2� 2̄��, where � b� b̄� = �10�20� and �2� 2̄� = �0�2�1�.
Note that all of the functions in the union of �1 and
�2 are bounded by M =max�ā exp�−0p�� b̄− 2p�= 19,
are �K-Lipschitz with �K = max�ā0̄ exp�−0p�� 2̄� = 1�21,
and have a first derivative bounded below by K =
min�a0 exp�−0̄�p�� 2� = 0�067. Similarly, the maximum
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Table 1. Estimates of the magnitude of the constants
characterizing the performance of the algo-
rithms: �np corresponds to the nonparametric
policy, and �p to the parametric one.

Demand functions

�1 �2

Cmax Cmax

Market size 
n� 102 103 104 102 103 104

x= 5
�np 0�92 1�04 1�07 1�09 1�25 1�31
�p 0�79 0�79 0�79 1�11 1�11 1�11

x= 10
�np 0�66 0�75 0�77 0�74 0�85 0�87
�p 0�61 0�53 0�39 0�58 0�60 0�54

revenue rate is bounded below by m=min� pa exp�−0̄�p��
p
 b− 2̄ p��= 3�38.
To estimate the constants characterizing the revenue

losses of the parametric and nonparametric policies, we
proceed as follows. We draw 100 demand functions from
each class of demand models above, using a uniform distri-
bution over each interval defining the space of parameters.
For each function, we estimate the regret associated with
the proposed nonparametric (Algorithm 1) and parametric
(Algorithm 2) policies for market sizes of n= 100, n= 103,
and n= 104, and for two initial (normalized) inventory lev-
els (x= 5� x= 10). This step is executed as in the previous
subsections. For each draw and each market size, we com-
pute the value of ��

n 
x� T ���n� , where � = 1/4 for the
nonparametric policy, and � = 1/3 for the parametric one.
Taking the maximum of these values over all 100 draws, we
arrive at an estimate, Cmax, for each market size, which cor-
responds to the worst-case constant observed for all mod-
els. This value serves as a proxy for the magnitude of the
constants characterizing the performance of the proposed
algorithms. Results are summarized in Table 1.
The reasonable magnitude of the constants (all fall in

the range of 0.5–1.3) suggests that our policies should
perform well in practical settings. In particular, based on
these results, we expect the nonparametric policy to achieve
at most a regret of 35% for n = 100, 23% for n = 103,
and 14% for n= 104, whereas the parametric policy should
achieve a regret of 24% for n= 100, 12% for n= 103, and
6% for n= 104.

7. Selected Proofs

Preliminaries and Notation. For any real number x,
x+ will denote max�x�0�. C1�C2� � � � will be used to
denote positive constants that are independent of a given
demand function, but may depend on the parameters of the
class � of admissible demand functions, and on x and T .
A sequence �an� of real numbers is said to increase to

infinity at a polynomial rate if there exists a constant 2> 0
such that lim infn→� an/n

2 > 0. To lighten notation, we
will occasionally omit the arguments of J �

n 
x� T ��� and
J D
n 
x� T � ��.
Proof of Proposition 1. The proof is organized around
three main steps that develop and analyze a lower bound on
the expected revenues achieved by the proposed sequence
of policies �n �=�
�n��n�� n= 1�2� � � � defined by means
of Algorithm 1.
Fix� ∈�,3= 2.Let�n be such that�n → 0 andn�n →�

at a polynomial rate as n → �. Let �n be a sequence
of integers such that �n →� and n�n �= n�n/�n →� at
a polynomial rate. We divide the interval � p� �p� into �n

equal-length intervals, and we let Pn = �pi� i = 1� � � � � �n�
be the left endpoints of these intervals. Now partition �0� �n�
into �n intervals of length �n and apply the price pi on the
ith interval. Define

�̂
pi�=
N


∑i
j=1 n�
pj��n�−N


∑i−1
j=1 n�
pj��n�

n�n

�

i= 1� � � � � �n� (22)

where N
·� is a unit-rate Poisson process. Thus, �̂
pi�
denotes the number of product requests over successive
intervals of length �n, normalized by n�n. Put

un �= 
logn�1/2 max�1/�n�1/
n�n�
1/2�� (23)

This will be used to quantify deviations of various quan-
tities associated with the proposed policy from their full-
information counterparts.

Step 1. We first develop an expression for a lower bound
on the expected revenues achieved by the proposed pol-
icy �n. Let X


L�
n = ∑�n

i=1 �
pi�n�n, X

P�
n = �
 �p�n
T − �n�

and put Yn = N
X
L�
n +X
P�

n �, Y 
L�
n = N
X
L�

n �, and Y 
P�
n =

Yn−Y 
L�
n . Y 
L�

n represents the maximum number of requests
during the learning phase if the system would not run out
of resources, Y 
P�

n the maximum number of requests dur-
ing the pricing phase, and Yn the maximum total number
of requests throughout the sales horizon. Now note that
one can lower bound the revenues achieved by �n by those
accumulated during the pricing phase, and during the latter,
the maximum number of units that can be sold is exactly
min�Y 
P�

n � 
nx− Y 
L�
n �+�. We deduce that

J �
n � Ɛ� �pmin�Y 
P�

n � 
nx− Y 
L�
n �+��� (24)

Next, we analyze the lower bound above by getting a
handle on �p, the estimate of pD and the quantities Y 
P�

n

and Y 
L�
n .

Step 2. In what follows, we separate two cases: �
�p��
x/T and �
�p� > x/T . The latter case is one where the deci-
sion maker would on average run out of inventory during
the sales horizon, and has to be analyzed separately.
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Case 1. Suppose first that �
�p� � x/T . Note that
min�Y 
P�

n � 
nx − Y 
L�
n �+� = Y 
P�

n − 
Yn − nx�+ and that
Ɛ
[ �pY 
P�

n

]= Ɛ�r
�
 �p���n
T −�n�. Hence, using (24) and the
fact that �p� �p, we have
J �
n � Ɛ� �pY 
P�

n �− �pƐ�
Yn − nx�+�

= Ɛ�r
�
 �p���n
T − �n�− �pƐ�
Yn − nx�+�� (25)

Lemma 4 in Online Appendix C establishes that Ɛ�r
�
 �p���
is close to r
�
pD��, namely, Ɛ�r
�
 �p��� � r
�
pD�� −
C1un − C2/n

3 for positive constants C1, C2. This is done
by controlling the deviations of a Poisson process from its
mean. With respect to the second term on the right-hand
side of (25), Lemma 5 in Online Appendix C establishes
that Ɛ�
Yn − nx�+�� C3nun. The key issue here is to con-
trol for stochastic fluctuations of customer requests at the
estimated price �p. We thus conclude that

J �
n �

[
r
�
pD��−C1un −

C2
n3

]
n
T − �n�− �pC3nun

� nr
�
pD��T −C4n
un + �n�� (26)

where C4 is a suitably chosen constant. Lemma 3 in Online
Appendix C establishes a lower bound on J D

n , J
D
n � nmD =

nmmin�T � x/M�, where m and M were defined in
Assumption 1. The latter, in conjunction with (26), implies
that

J �
n

J D
n

= J �
n

nJD
� 1− C4

mD

un + �n�� (27)

Case 2. Now suppose that �
�p� > x/T . In this case, note
that pc = pD = �p. Recalling the lower-bound expression
in (24), we seek to get a handle on min�Y 
P�

n � 
nx−Y 
L�
n �+�.

Lemma 6 in Online Appendix C establishes that this quan-
tity will be close to the total units in inventory, nx, with
very high probability. This is done by bounding the prob-
ability of � �= �8� min�Y 
P�

n � 
nx− Y 
L�
n �+�� nx−C5un�

� �p−pD��C6un� for appropriate positive constants C5, C6.
The revenues generated by �n can be bounded below as
follows:

J �
n � Ɛ� �pmin�Y 
P�

n � 
nx− Y 
L�
n �+��


a�

� Ɛ�
pD −C6un�min�Y

P�
n � 
nx− Y 
L�

n �+� ����
��


b�

� 
pD −C6un�
nx−C9nun�

(
1− C7

n3−1

)

� pDnx− nC8un� (28)

where both 
a� and 
b� follow from the definition of � and
Lemma 6, and where C7, C8 > 0 are suitably large. Now,
recall that because �
�p� > x/T , pD = �p and J D

n = nx �p.
Hence,

J �
n

J D
n

= J �
n

nx �p � 1− C8
�pxun� (29)

Step 3. Let C9 = max�C4/
m
D��C8/
�px��. Combining

(27) and (29), we have for all � ∈ �, ��
n 
x� T ��� �

C9
un + �n�, and note that C9 does not depend on the spe-
cific function � ∈�. Note that the choice of tuning param-
eters that minimizes the order of the the upper bound on
the regret is exactly �n � n−1/4 and �n � n1/4. Plugging in,
we get for some C10 > 0,

sup
�∈�

��
n 
x� T ����

C10
logn�
1/2

n1/4
·

The proof is complete. �

Proof of Proposition 2. Because J �
n 
x� T ��� � J ∗

n ·

x� T � ��, the result will be established if we can prove
that for some C > 0

sup
�∈�

(
1− J ∗

n 
x� T � ��
JD
n 
x� T � ��

)
>

C

n1/2
· (30)

Consider the demand function �
p� = 
a − bp�+ with
b ∈ �K� �K� and a=max�2�K �p� �K �p+x/T �. Note in particu-
lar that � ∈� because a�M . In addition, for this demand
function we have pu = pc = �p. By Proposition 1 in Gallego
and van Ryzin (1994), any dynamic pricing policy will
never price below pu; hence, the optimal dynamic pricing
policy is to price at pu until the minimum of T and the
time when inventory is depleted. We deduce that

J ∗
n 
x� T � ��= puƐ�N 
n�
pu�T ��

−puƐ�
N 
n�
pu�T �− nx�+�

= nr
pu�T −puƐ�
N 
nx�− nx�+�

= J D
n 
x� T � ��− �pnxe−nx 
nx�

nx


nx�! ·

Now, using, e.g., Sterling’s approximation, one has that

n1/2
1− J ∗
n /J

D
n �= 
n1/2 �p�
�p�T �−1 �pnx

· e−nx
nx�nx

nx�!�−1 →C1 > 0

as n→� and (30) follows. This completes the proof. �

Proof of Proposition 3. In this section, we define for
any , ∈ +, pD
,� �= max�pu
,��pc
,��, where pu
,� =
argmax�p�
p�,�� p ∈ � p� �p��, pc
,�= argmin���
p�,�−
x/T �� p ∈ � p� �p��. In addition, we define ��
,� = �l� l =
�
p�,� for some p ∈ � p� �p��. Let ,∗ denote the true
parameter value. The proof follows the structure of that of
Proposition 1. The first step provides a lower bound on the
revenues achieved by the proposed policy. The second step
bounds the difference between the estimated parameter vec-
tor and its true value and analyzes the revenue rate at �p =
max�pu
,̂�� pc
,̂��. The proof concludes with the resulting
upper bound obtained for the regret.
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Step 1. Here, we derive a lower bound on the expected
revenues under the policy �n. Let X


L�
n = ∑k

i=1 �
pi�n�n,
X
P�

n = �
 �p�n
T −�n�, and put Yn =N
X
L�
n +X
P�

n �, Y 
L�
n =

N
X
L�
n �, and Y 
P�

n = Yn − Y 
L�
n . As in the proof of Proposi-

tion 1, we have

J �
n � Ɛ

[ �pmin{Y 
P�
n � 
nx− Y 
L�

n �+
}]

(31)

Next, we analyze the lower bound above by getting a
handle on �p, the estimate of pD, and the quantities Y 
P�

n

and Y 
L�
n .

Step 2. Lemma 7 in Online Appendix C establishes
that r
�
pD
,∗�� ,∗�� ,∗�− r
�
 �p�,∗�� ,∗��C1�,̂−,∗��,
which implies that controlling ,̂ will provide a handle on �p.
Lemma 8 in Online Appendix C establishes that Ɛ�,̂ −
,∗�� �C2
n�n�

−1/2 for all n� 1, which in turn implies that

Ɛ�r
�
 �p�,∗�� ,∗��

= r
�
pD
,∗�� ,∗�� ,∗�+ Ɛ�r
�
 �p�,∗�� ,∗�

− r
�
pD
,∗�� ,∗�� ,∗��

� r
�
pD
,∗�� ,∗�� ,∗�− C1C2

n�n�

1/2
·

Finalizing the analysis of the lower bound in (31)
can be conducted in a similar manner as in the proof
of Proposition 1 (Step 2) by letting in this case un =

logn�1/2
n�n�

−1/2. Indeed, one can again focus on the two
cases �
�p�,∗� � x/T and �
�p�,∗� > x/T . In the former
case, the key is on getting a handle of Ɛ�
Yn−nx�+�, which
can be shown to be bounded by C3un for some C3 > 0. In the
latter, one can establish that the firm will sell almost all units
with very high probability. In particular, one can show that
� �= �8� min�Y 
P�

n � 
nx−Y 
L�
n �+�� nx−C4un� � �p−pD��

C5un� has very high probability for an appropriate choice
of C4, C5 > 0.

Step 3. As in the proof of Proposition 1 (Step 3), one
obtains that for some C6 > 0,

(
1− J �

n

J D
n

)
�C6
�n + 
logn�1/2
n�n�

−1/2�� (32)

and the result follows by plugging in �n � n−1/3. This com-
pletes the proof. �

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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